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Abstract. We study theoretically the dynamics of lasing atoms in a very hot plasma capillary, which
produce coherent X-ray radiation. The atoms which participate in the lasing action are treated as a
dilute gas, embedded in the plasma, whose electrons play the dominant role in inducing relaxations and
decoherences. The active atom interacting with the electron reservoir in thermal equilibrium is described
by a general Hamiltonian. In analogy with a radiation reservoir, by eliminating the degrees of freedom
of the electron reservoir, the evolution rates of the Master Equation, i.e. the transition rates for the
populations and dephasing rates for coherences, are calculated. It is demonstrated, by going beyond the
dipole approximation, that the contribution of the adiabatic dephasing rate is significant compared to that
of the non-adiabatic rate, in contrast to the case of a radiation reservoir. We also study other dephasing
mechanisms, e.g. the motion of the lasing atom’s center of mass, and the role of other atomic levels.

PACS. 52.20.Hv Atomic, molecular, ion, and heavy-particle collisions – 32.70.Jz Line shapes, widths, and
shifts

1 Introduction

Recently, the Z-Pinch process (e.g. [10]) has been used
to create plasma conditions relevant to X-ray lasers1, via
capillary discharge. A capillary discharge X-ray laser has
been obtained [2,17,18,20], employing the collisional ex-
citation pumping mechanism [7,22,24]. The theoretical
modeling of this capillary discharge X-ray laser is based on
a combination of a magneto-hydrodynamic numeric model
(e.g., [16]) for the description of the pinch process, and
Lamb’s semi-classical laser theory [11] as a basic theoret-
ical model of the laser. In this approach, Maxwell’s equa-
tions are used to describe the lasing radiation, and atomic
evolution equations — the gain medium of the laser. In
the present paper we focus on the latter.

The gain medium equations contain evolution rates,
which describe the underlying physical interactions affect-
ing the lasing atoms. Many implementations of the laser
model (e.g. [14]), including those aimed at plasma based
X-ray lasers (e.g. [12]), treat the evolution rates as semi-
empirical parameters. However, derivation of these rates
can be found in the literature, taking into account inter-
actions of the lasing atoms with the surrounding plasma,
namely photons, electrons and other ions. The commonly
used approach deals separately with the transition rates,

a e-mail: bargill@tx.technion.ac.il
1 A review of methods for the realization of X-ray lasers can

be found in [7] and in the proceedings of the International
Conference on X-ray Lasers, from the years ’86, ’90, ’92, ’94,
’96, ’98, ’00, ’02.

which are related to the changes of the level populations
of the lasing atoms, and with dephasing rates, related to
changes of the atomic transition dipole moments.

Transition rates are usually defined through excitation
and de-excitation cross-sections. These cross-sections are
usually derived using scattering techniques (e.g. [15]), em-
ploying both a classical description of the electrons, e.g.,
the impact parameter method [8], and a quantum me-
chanical description, based on partial wave theory and
the Born expansion [5]. Further extensions and elabora-
tions of this theory have been carried out (e.g. [19,21]),
using oscillator strengths, and including interactions with
other perturbers.

Atomic dephasing rates, which govern the time evolu-
tion of the coherences, i.e. the off diagonal elements of the
system’s density matrix, are defined through phase fluctu-
ations due to various processes of the interactions between
the atom and its environment. The interest in the phe-
nomenon of dephasing arises from the fact that it affects
the radiation emitted by the dephased atom, resulting in
broadening and shift of the radiated lines. Collision pro-
cesses, both those causing transitions among the atomic
states, and those which do not, constitute dephasing pro-
cesses. Broadening of spectral lines, caused by collisions
with particles in the surrounding gas, is called pressure
broadening. Under the impact approximation, the colli-
sions are assumed to be uncorrelated, mostly weak, and
short in comparison with the mean time between collisions
(e.g. [1]). In previous studies of these effects, usually scat-
tering formalism was employed. Both classical, through
the classical path method, and quantum descriptions of
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the perturbers were used (e.g. [9]). Further elaborations,
such as inclusion of atomic center-of-mass motion (see [3])
and density matrix techniques [4,13], were also carried
out. A model for both transition and dephasing effects us-
ing the density matrix formalism has been suggested as
well [4].

The main shortcoming of the various methods de-
scribed above lies in their use of scattering techniques.
This approach results in expressions, which can usually
be obtained only to first order in the interactions. Also,
since dephasing rates are derived through spectrum broad-
ening, they cannot be easily compared to transition rates.
Although [4] treats both rates on the same footing, they
retain the complexity of scattering methods.

In the present paper, we investigate the atomic evo-
lution rates induced by the surrounding plasma, as a su-
perposition of two different reservoirs, a radiation reser-
voir and an electron reservoir. We focus on the electron
reservoir, since the treatment of a radiation reservoir is
well-known (e.g. [6]). The effect of the plasma ions is not
studied here, since they are slow and therefore have long
interaction times, and it has been shown that they are usu-
ally negligible (the quasi-static approximation — see [1]).
The radiating atoms form a dilute gas, and each lasing
atom is assumed to be a small quantum system interact-
ing with the surrounding reservoirs. This assumption is
valid since only a small fraction of the plasma particles
takes part in the lasing activities. Note that although we
refer to the gain medium as atoms, our approach is appli-
cable to cases where it consists of ions as well.

In our derivations we employ the impact approxima-
tion, which allows us to assume that at any moment a sin-
gle interaction occurs, and that each reservoir affects the
lasing atoms independently. Thus our problem is reduced
to that of an atom interacting with only one reservoir at
a time. Combining the effects of all interactions renders
the complete model of the lasing atom’s evolution. We
utilize the density matrix approach, through which both
transition and dephasing rates are obtained, as we for-
mulate a generalized Hamiltonian for the problem of an
atom interacting with a reservoir. Then we describe the
electron reservoir using second quantization, which allow
us to obtain an exact derivation of the evolution rates;
this method is applicable to both reservoirs, thus making
possible a comparison between them. Also, our formula-
tion for the electron reservoir enables further insight and
better understanding of the results obtained in previous
works.

It should be emphasized that our results have a wide
scope of application, although the original motivation
stems from X-ray lasers research. Our Hamiltonian-based
methodology for the derivation of the evolution rates is
relevant to other physical problems as well. For example,
this approach can be used to analyze the emissions of stel-
lar configurations, such as solar flares, in Astrophysics.

The remainder of the paper is organized as follows:
Section 2 contains the main contribution of our study,
the derivation of interaction of the atomic system with
an electron reservoir. The transition and dephasing rates

are obtained using the density matrix formalism, where
the electrons of the plasma play the role of the reservoir.
Here the second quantized electronic states of the plasma
replace the second quantized photonic modes of the ra-
diation reservoir. The resulting rates are then compared
to those of the radiation bath, providing insight as to dif-
ferent dephasing mechanisms, and their physical origins.
An hydrogen-like atom serves as a representative model
and is solved in detail, allowing us to study the depen-
dence of the rates on the parameters of the problem, and
to get a feel for the time-scales in question. Section 3 ad-
dresses an additional point of interest, checking the ef-
fect of the motion of the atom’s center of mass on the
evolution rates, while in Section 2, the atom is assumed
to be infinitely heavy. We derive a series expansion of
the corrections introduced by this effect, and show that
the effect is negligible. In Section 4 we explore other de-
phasing mechanisms, e.g., those related to the presence of
many atomic levels, which are coupled to the lasing levels
through the reservoir. The contributions to the dephasing
phenomenon, added by this section, complete the picture
of dephasing in practical physical systems.

2 An atom in an electron reservoir

In this section we first derive the atomic evolution rates
in a general gas reservoir, in analogy with the calcula-
tions of these rates in a radiation reservoir (e.g. [6]). We
describe the gas reservoir interacting with the atomic sys-
tem, employing a general Hamiltonian formulation. Based
on these general expressions, we find the evolution rates
for a hydrogen-like lasing atom embedded in high temper-
ature plasma. This provides insight into the relationship
between the transition and dephasing rates, and the in-
teraction potentials. This approach offers clarity and sim-
plicity, based on elementary aspects of quantum mechan-
ics. We then compare our results to those obtained for a
radiation reservoir, and deduce conclusions regarding the
evolution rates.

2.1 General gas reservoir

We consider a microscopic system, e.g., an atom, inter-
acting with the environment particles via a general cou-
pling potential. Following [6], the interaction Hamiltonian
is generally of the form

HAB =
∑

α

AαBα, (1)

where Aα are atomic operators, and Bα are reservoir
operators. The rate of transition from atomic state |n〉
of energy �ωn to the state |m〉 of energy �ωm, with
ωnm = ωn − ωm, is expressed as

Γn→m =
∑

α,γ

〈m|Aα|n〉〈n|Aγ |m〉Gαγ(ωnm) (n �= m),

(2)
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where 〈m|Aα|n〉 is a matrix element of the atomic system.
Here Gαγ(ωnm) is the reservoir correlation function, and
it is given by:

Gαγ(ω) =
2π

�

∑

N

WN

∑

M

〈N |Bα|M〉〈M |Bγ |N〉

× δ(EN − EM + �ω). (3)

where |N〉 and |M〉 are the eigen energy states of the
reservoir, of energies EN and EM , respectively, WN is the
probability of the |N〉 state, and 〈N |Bα|M〉 is the ma-
trix element of Bα between these states. Notice that the
correlation function depends only on the reservoir proper-
ties. The rate of dephasing, between the states |n〉 and |m〉,
which corresponds to the rate of change of the off-diagonal
matrix element of the atomic density matrix, σmn, consists
of an adiabatic component, and a non-adiabatic one. The
non-adiabatic dephasing rate can be expressed in terms of
the transition rates as

(Γnm)non.ad =
1
2




∑

a�=n

Γn→a +
∑

a�=m

Γm→a



 , (4)

while the adiabatic dephasing rate is given by

(Γmn)ad =
1
2
�e

∑

α,γ

|〈m|Aα|m〉 − 〈n|Aγ |n〉|2 Gαγ(0). (5)

Note that the adiabatic dephasing term of the coherence
σmn depends on the difference between the diagonal ma-
trix elements of the interaction potential of states |n〉 and
|m〉. Intuitively, this means that the adiabatic dephasing
is caused by the difference in impact of the interaction
potential on the two dephased levels. As the interaction
potential affects the two levels differently, fluctuations be-
tween them, and thus dephasing, occur. The transition
rate and the non-adiabatic dephasing rate, on the other
hand, depend on the off-diagonal matrix elements of the
interaction potential of the atomic states. This difference
between the evolution rates will be evident through their
effect in certain cases.

We describe the reservoir as a gas of independent par-
ticles, which constitutes a complete state basis, where the
ith particle has mass m, position ri and momentum pi.
The reservoir Hamiltonian is written as

HB =
N∑

i

p2
i

2m
, (6)

with N , the total number of particles. The volume of the
reservoir is taken to be V and the average number of parti-
cles per unit volume is n0 = N/V . We describe the parti-
cles in the quantization volume V in terms of plane waves
with periodic boundary conditions, i.e.,

p2

2m
|k〉 = εk|k〉, |k〉 =

1√
V

eik·r, and εk =
�

2k2

2m
.

(7)

Thus, the energy states of the reservoir, |N〉, are given by

HB|{nk}〉 = E({nk})|{nk}〉, (8)

where |N〉 = |{nk}〉 stands for the ensemble of one-
particle k states, and nk is the number of particles in
the kth state.

We shall find it convenient to employ second quanti-
zation to describe the reservoir as a gas of independent
particles. We introduce ak and a†

k for the annihilation
and creation operators for the single particle states. The
Hamiltonian of the reservoir is then

HB =
∑

k

εkn̂k, (9)

where n̂k = a†
kak is the number operator of the state

k, with the eigenvalues nk. The general Hamiltonian of
interaction between the atom and the gas is assumed to be

HAB =
∑

i,s

φsi(rs − ri), (10)

where rs represent the coordinates of the atomic system,
e.g. the internal electrons. This is a general form of an
interaction potential, which fits most physical potentials,
such as the Coulomb potential, which we will employ later
on. We represent the energy states |n〉 of the atom by the
orthogonal set of normalized atomic wave-functions

HAΨn({rs}) = εnΨn({rs}). (11)

We now wish to cast our general interaction Hamiltonian,
equation (10), in the form of equation (1). For a single
species gas we have φsi = φs, and introducing Fourier
transform in space by

φs(r) =
1
V

∑

q

eiq·rφs(q) (12)

we have

HAB =
1
V

∑

q

∑

s

φs(q)eiq·rs

∑

i

e−iq·ri . (13)

The gas density operator in space position r, is ex-
pressed as

D̂(r) =
∑

i

δ(r − ri) =
1
V

∑

q

eiq·rDq, (14)

where
Dq =

∑

i

e−iq·ri , (15)

or in second quantized form

Dq =
∑

k

a†
k−qak. (16)

Indeed equation (1) is expressed in terms of the atomic
operators

Aq =
∑

s

φs(q)eiq·rs , (17)
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and the reservoir operators

Bq =
1
V

Dq. (18)

We note that Fourier space corresponds to a transition to
momentum space, with �q being the momentum exchange
of the reservoir particles with the atom.

We now move on to the derivation of the transition
rates. Since we have modeled the problem employing the
conventions of reference [6], we can immediately use equa-
tion (2) to write the rate as

Γn→m =
∑

q,q′
〈m|Aq|n〉〈n|Aq′ |m〉Gqq′(ωnm) (n �= m).

(19)
In a thermal equilibrium reservoir, with temperature T ,
we write

Gq,q′(ω) = δq′,−qGq(ω), (20)

where

Gq(ω) =
2π

�

∑

N

e−βEN

Z

1
V 2

∑

M

〈N |Dq|M〉〈M |D−q|N〉

× δ(EN − EM + �ω), (21)

β = 1/kBT , kB is the Boltzmann factor, and Z =∑
N e−βEN is the partition function of the gas. We further

observe that Gq(ω) is nothing but the Fourier transform
in time of the density-density correlation function of the
gas

Gq(t) =
2π

�

1
V 2

〈Dq(t)D−q(0)〉, (22)

where
〈...〉 = Tr {ρth...} (23)

stands for trace over ρth, the thermal equilibrium density
matrix of the reservoir. It is here that the formulation
in terms of the second quantized operators comes handy.
With the density operator of equation (16), we write

〈Dq(t)D−q(0)〉 =
∑

k,k′
〈a†

k−q(t)ak(t)a†
k′+qak′〉

=
∑

k,k′
ei(εk−q−εk)t/�〈a†

k−qaka†
k′+qak′〉

=
∑

k

ei(εk−q−εk)t/�fk−q(1 − fk), (24)

where

fk =
1

eβ(εk−µ) ± 1
(25)

is the particles’ distribution function, and µ is the chem-
ical potential of the gas. Now, the reservoir correlation,
equation (21), can be cast into

Gq(ω) =
2π

�

1
V 2

∑

k

fk(1−fk+q)δ(εk+q− εk−�ω). (26)

At high temperatures, when kBT > µ, since fk � 1, the
distribution becomes Maxwellian, i.e.,

fk = Ce−βεk, (27)

where C is a normalization constant, to be determined by

n0 =
1
V

∑

k

fk. (28)

Since the summation over k can be transformed into an
integral,

1
V

∑

k

→ 1
(2π)3

∫
d3k (29)

we end up with

C = n0�
3(2πβ/m)3/2. (30)

For a gas environment at high temperatures, the correla-
tion function is

Gq(ω) =
2π

�
n0�

3(2πβ/m)3/2 1
V

×
∫

d3ke−βεkδ(εk+q − εk − �ω)

=
2π

�

(2π)3

V

(
βm

2π�2q2

) 1
2

× exp

{
−β�

2

2m

(
mω

�q
− q

2

)2
}

. (31)

We return now to the atomic matrix elements of equa-
tion (17), and write it explicitly as

〈m|Aq|n〉 =
∏

s

∫
d3rsΨ

∗
m({rs})

×
∑

s′
φs′(q)eiq·rs′ Ψn({rs}). (32)

This can be calculated if the interaction potential φ, and
the eigen-functions of the atom are known. The transition
rate of equation (19) is simply then

Γn→m =
∑

q

|〈m|Aq|n〉|2Gq(ωnm) (n �= m), (33)

where the correlation function of the electron gas is given
by either equation (26) or equation (31). Similarly, the
adiabatic dephasing rate of equation (5), can be written as

(Γmn)ad =
1
2
�e

∑

q

|〈m|Aq|m〉 − 〈n|Aq|n〉|2 Gq(0). (34)

Equation (33), and equation (34), are our general results
for the calculations of the evolution rates.
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2.2 Evolution rates — hydrogen-like atom
in electron gas

We now use the results of the previous general study to
investigate an atomic radiating system in a hot plasma,
where the very hot electron gas plays a dominant role, as
the reservoir. In order to actually calculate the evolution
rates, the atomic wave functions must be known, and the
interaction potential between the atom and the electrons
has to be specified. We assume that:

1. the atomic system is hydrogen-like with a single atomic
electron,

2. the interaction is Coulombic,
3. the atom is stationary (this was implicitly assumed in

the previous section).

Since the atom is stationary, the position of the nucleus
of the atom can be chosen to be at R = 0. Therefore, the
interaction Hamiltonian of equation (10) can be written as

HAB =
∑

i

e2

(
1

|ri − rs| −
Ze

|ri|
)

, (35)

where −e is the charge of the electron, Ze is the nucleus
charge, and rs is the radius vector of the electron, mea-
sured from the static nucleus. We now represent the in-
teraction Hamiltonian by a sum of products of atomic
operators Aq and reservoir operators Bq (see Eq. (1)).
According to equations (13), (17) and (18), the atomic
operator is:

Aq = Φq(−Ze + eiq·rs), (36)

where Φq is the Fourier transform of the Coulomb
potential:

Φq = Φq =
4πe2

q2
. (37)

At this point we wish to point out that the positive
background of the ions of the plasma provides a screen-
ing mechanism, and the bare Coulomb potential of equa-
tion (37) can be replaced, when a cutoff is called for, by a
statically screened potential

Φq =
4πe2

q2 + q2
D

, (38)

where q2
D is the Debye screening. The reservoir operators

Bq =
1
V

∑

k

a†
k−qak, (39)

are then expressed in terms of the electron gas creation
and annihilation operators. Having determined the above
operators we proceed with a derivation of the transition
rates, and then calculate the dephasing rates.

2.2.1 Transition rates

To find the transition rate, as given by equation (33), we
first turn to the atomic contribution, namely to the off-
diagonal matrix element 〈m|Aq|n〉. In the present case

equation (32) is simplified, with equation (36), into

〈m|Aq|n〉 = Φq

∫
d3rΨ∗

m(r)(−Ze + eiq·r)Ψn(r), (40)

where r replaces rs for brevity. Since the states |n〉 and
|m〉 are orthogonal, the first term in the integral, i.e., the
nucleus contribution, vanishes. At this point we have to
decide on the atomic wave functions, which we choose to
be those of the ground state |m〉 = |g〉 = (1, 0, 0) and the
first excited state |n〉 = |e〉 = (2, 1, 0) of the hydrogen-like
atom, i.e.,

Ψg(r) =
1√
4π

2
(

Ze

a0

) 3
2

e−Zer/a0

Ψe(r) =

√
1
4π

(
Ze

2a0

) 3
2 Ze

a0
r · ue−Zer/2a0 . (41)

Here a0 = �
2/me2 is the Bohr radius, and u is an arbi-

trary unit vector related to the quantization axis of the hy-
drogen atom. Substituting these wave function into equa-
tion (40) we have

〈e|Aq|g〉 = Φq
1

4
√

2π

(
Ze

a0

)4

×
∫

d3re−3Zer/2a0r · ueiq·r, (42)

or explicitely

〈e|Aq|g〉 = i6
√

2
(

2
3

)6(
a0

Ze

)
Φq

q · u
[
1 + (2a0q/3Ze)

2
]3 .

(43)
Substituting equation (43) for the matrix element, and
equation (31) for the reservoir correlation function in
equation (33) for the transition rate, we find

Γe→g =
218

√
2π

311
n0

√
mβ

e4

�2

(
a0

Ze

)2

×
∫ ∞

0

dq
1
q

[
1 +

(
2a0q

3Ze

)2
]−6

× exp

{
−β�

2

2m

(
mω

�q
− q

2

)2
}

, (44)

where ω = ωeg. Equation (44) is our general result for
the exact transition rate of a hydrogen-like atom from
level (2, 1, 0) to level (1, 0, 0) due to Coulomb interaction
with an electron reservoir. The single integral over q can
be evaluated numerically; e.g., for a plasma with electron
gas at temperature kBT = 150 [eV] and density n0 =
1018

[
cm−3

]
, the transition rate is Γe→g = 7.9×108

[
s−1

]
.

To gain some more insight, we attempt an analytic
expression for the transition rate when the dipole approx-
imation is valid. Since we are interested in a regime rel-
evant to the Z-Pinch process, we assume the electrons in
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the plasma to be “fast”, namely having very small momen-
tum exchange with the atom’s electron, i.e., we consider
the limit where q(a0/Ze) � 1. This is the dipole approxi-
mation limit, when the inverse wave vector, 2π/q, which is
involved in the interaction process is much larger then the
atomic radius a0/Ze. Notice that this small dipole limit
is not the same as that which occurs when an atom is
embedded in a radiation reservoir, where 2π/q is rather
the radiation wave length. We expand the denominator of
equation (44), and write
[
1 +

(
2a0q

3Ze

)2
]−6

= 1 − 6
(

2a0q

3Ze

)2

+ O

((
a0q

Ze

)4
)

.

(45)
The first term in this expansion yields the dipole approx-
imation. Substituting this term into equation (44) gives
the result:

Γe→g � 3.71 n0

√
mβ

e4

�2

(
a0

Ze

)2

eβ�ω/2K0

(
β�ω

2

)
, (46)

where K0(x) is the modified Bessel function of order 0.
A numerical verification shows that the dipole approxi-
mation differs from the exact solution (for the parameters
given above) by 6%. If the next term of the expansion is
used, the result agrees with the exact calculation to within
an error of 1%. Our result, equation (46) of the dipole ap-
proximation, agrees with results found in the literature
(e.g., [21]).

2.2.2 Dephasing rate

Following the same procedure as in the calculation of the
transition rate, we now calculate the dephasing rate. This
is done again in our particular model, for the levels |g〉 =
(1, 0, 0) and |e〉 = (2, 1, 0) of a hydrogen-like atom. Our
derivation uses equation (34) as a starting point. Note
that by dephasing rate we mean only the adiabatic part,
since the non-adiabatic component, equation (4), can be
readily calculated from the transition rate, obtained in the
previous section.

In this case only diagonal matrix elements of the
atomic operator Aq play a role. For the ground state, us-
ing equation (36), we write

〈g|Aq|g〉 = Φq

∫
d3rΨ∗

g (r)(−Ze + eiq·r)Ψg(r), (47)

and with the first wave-function of equation (41) we obtain
two terms,

〈g|Aq|g〉1 = −ZeΦq, (48)

and

〈g|Aq|g〉2 = Φq

[
1 +

(
a0q

2Ze

)2
]−2

. (49)

Next, for the excited state

〈e|Aq|e〉 = Φq

∫
d3rΨ∗

e (r)(−Ze + eiq·r)Ψe(r), (50)

again we obtain two terms, the first one

〈e|Aq|e〉1 = −ZeΦq (51)

is the same as equation (48), while the second one

〈e|Aq|e〉2 = Φq
1
4π

(
Ze

2a0

)3(
Ze

a0

)2

×
∫

d3r (r · u)2 e−Zer/a0eiq·r, (52)

yields

〈e|Aq|e〉2 =
Φq[

1 +
(

a0q
Ze

)2
]3



1 − 6 cos2 χ

(
a0q
Ze

)2

1 +
(

a0q
Ze

)2





(53)
where cosχ = q · u/q.

We return now to equation (34) and first observe
that the contribution of the nucleus vanishes, since equa-
tion (48) is canceled by equation (51). Next, from equa-
tion (31) we get

Gq(0) =
2π

�

(2π)3

V

(
βm

2π�2q2

) 1
2

e−β�
2q2/8m, (54)

and the dephasing rate is

(Γeg)ad =
π

�
n0

(
βm

2π�2

) 1
2
∫

d3qΦ2
q

1
q
e−β�

2q2/8m

×






[
1 − 6 cos2 χ

( a0q
Ze

)2

1+( a0q

Ze
)2

]

[
1 +

(
a0q
Ze

)2
]3 − 1

[
1 +

(
a0q
Ze

)2
]2






2

. (55)

Equation (55) is our general result for the exact dephas-
ing rate of a hydrogen-like atom from level (2, 1, 0) to level
(1, 0, 0) due to Coulomb interaction with an electron reser-
voir. The integration over the spherical angle can be eas-
ily carried out, and we are left with a single integral over
q, which can be evaluated numerically. E.g., for plasma
with an electron gas at temperature kBT = 150 [eV]
and density n0 = 1018

[
cm−3

]
, the dephasing rate is

(Γeg)ad = 8.4× 1010
[
s−1

]
. Note that this rate is 2 orders

of magnitude larger than the transition rate, calculated for
the same parameters. In contrast we observe that in the
case of an interaction with a radiation reservoir (e.g. [6]),
the adiabatic dephasing vanishes, and thus the dephasing
and the transition rates are of the same order of mag-
nitude. The electron reservoir induces rather significant
dephasing.

We now attempt to calculate equation (55) analyti-
cally, using a power series expansion in the presumably
small parameter (a0/Ze) q, as was done previously for the
transition rate. The dominant contribution comes from
the second order term in (a0/Ze) q, and yields

(Γeg)ad = 2.33 × 105n0

√
mβ

(
e4a2

0

�2Z2
e

)(
ma2

0

β�2Z2
e

)
, (56)
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Fig. 1. Transition and dephasing rates (in logarithmic scale)
vs. electron temperature. The rates are given by equations (46)
and (56), describing the leading term. The figure shows that
the rates are nearly constant for temperatures ranging from
0 to 300 [eV]. The dephasing rate is two orders of magnitude
larger than the transition rate.

i.e. it is second order in the dipole approximation. Again
we find that this dephasing rate is about two orders of
magnitude larger than the dipole approximation result,
equation (46), for the transition rate. Comparing equa-
tion (56) to equation (46), we see that in both cases
the dependence on n0 is linear. The dependence on T is
less obvious, although a numerical check shows that for a
wide range of temperatures the rates change little; they
are determined mainly by the atomic parameters. This is
demonstrated in Figure 1. It can be deduced that for our
problem of a capillary discharge X-ray laser, the adiabatic
dephasing rate due to the electron reservoir is much larger
than the transition rate, for the entire relevant tempera-
ture range. This is true for a variety of physical problems
operating in similar regimes as well.

3 Dependence of evolution rates on atomic
center of mass motion

In this section we study the evolution rates, taking into
account the motion of the center of mass of the radiat-
ing atom, which was previously assumed to be infinitely
heavy2. We incorporate the center of mass momentum as
an additional variable of the density matrix, and recalcu-
late the rates by eliminating this extra degree of freedom.
An element of the extended atomic density matrix will be
written as σmP′,nP, between the atomic state m with mo-
mentum P′ and the atomic state n with momentum P.
The motion of the nucleus of mass M , is described by the
Hamiltonian H = P 2/2M , and the eigenfunctions

φP(R) =
1√
V

eiP·R/�, (57)

2 Our treatment does not deal with the direct effect of the
center-of-mass motion on the radiation. This effect, called the
Doppler effect, is significant, and should be included in a com-
plete description of the emission spectrum. The Doppler effect
is discussed in [23], for example.

where R is the position of the center of mass. Since the
nucleus is indeed heavy compared to the particles of the
reservoir, i.e. the electrons, we find that the effect of its
movement can be written as small corrections to the re-
sults of the previous sections.

We start by calculating the transition rates for an ion
in an electron reservoir. The Hamiltonian for the problem,
including the center of mass motion of the ion, is:

H =
P 2

2M
+

p2
s

2m
− Zee

2

|rs − R|︸ ︷︷ ︸
HA

+
∑

i

p2
i

2m
︸ ︷︷ ︸

HB

+
∑

i

[
e2

|rs − ri| −
Zee

2

|ri − R|
]

︸ ︷︷ ︸
HAB

(58)

where again the s subscript denotes a bound electron, and
the i subscript — a reservoir electron. Introducing the
Fourier transform in space, we rewrite the interaction part
of the Hamiltonian as:

HAB =
1
V

∑

q

∑

i

e−iq·riΦq

[
eiq·rs − Zee

iq·R] (59)

where Φq is the Fourier transform of the interaction po-
tential (Eq. (37)). Following the notation of the previous
section (Eq. (4)), we express the transition rate as

ΓmP′→nP =
∑

q

Gq (ω,P,P′) |〈n,P|Aq|m,P′〉|2 , (60)

where ω is given by the energy difference between the
levels m and n, i.e. �ω ≡ �ωmn = �ωn−�ωm. The reservoir
correlation function of equation (31) is then

Gq (ω,P,P′) =
2π

�V

C

(2π)3

∫
d3ke−βεk

× δ

(
εk+q − εk − �ω +

P 2

2M
− P ′2

2M

)
, (61)

where the normalization constant C is given by equa-
tion (30). The atomic operator Aq now depends on
the radius vector of the atomic nucleus R through the
term eiq·R, in contrast to equation (36). This affects only
the center of mass degrees of freedom, namely

〈n,P|Aq|m,P′〉 = 〈n|Aq|m〉0
∫

d3RΨ∗
P eiq·RΨP ′ , (62)

where 〈n|Aq |m〉0 is the atomic matrix element for a sta-
tionary atom. Remember that the contribution of the
nucleus term of the atomic operator vanishes in the
derivation of the evolution rates. The integration of
equation (62) yields

〈n,P|Aq|m,P′〉 = 〈n|Aq|m〉0δP′,P−�q. (63)

Let us focus first on the calculation of the transition rate.
For simplicity, we take the atomic operator Aq to first
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order only, and encapsulate it as Aq = ΦqqxmnδP−�q,P′ .
using equations (60–63) we write

ΓmP′→nP =
2π

�

C

(2π)6

∫
d3qΦ2

qδ
2
P−�q,P′q2x2

mn

∫
d3ke−βεk

× δ

(
εk+q − εk − �ω +

P 2

2M
− P ′2

2M

)
. (64)

We use δP−�q,P′ to eliminate the final state P and write

ΓmP′→n =
2π

�

C

(2π)6

∫
d3qΦ2

qq
2x2

mnI, (65)

where

I = 2π

∫ ∞

0

dkk2e−βεk
m

�2kq

∫ �
2kq
m

− �2kq
m

dE

× δ

(
E +

�
2q2

2m
− �ω +

�qP ′y
M

+
�

2q2

2M

)
(66)

with x = cos (k · q/|k||q|), and y = cos (q ·P′/|q||P ′|). To
proceed we observe that the momentum terms, with 1/M ,
in the delta function are small compared to the original
frequency-dependent terms, and expand the δ-function up
to second order as

δ

(
E +

�
2q2

2m
− �ω +

�qP ′y
M

+
�

2q2

2M

)

� δ

(
E +

�
2q2

2m
− �ω

)

−
(

�qP ′y
M

+
�

2q2

2M

)
δ′
(

E +
�

2q2

2m
− �ω

)

+
1
2

(
�qP ′y

M
+

�
2q2

2M

)2

δ′′
(

E +
�

2q2

2m
− �ω

)
. (67)

We readily see that the zeroth order term yields the orig-
inal transition rate, without center of mass motion. After
some algebra, we find the correction due to the first order
term to be

Γ (1)
m→n = Γ0

(m

M
β�ω

)



K1

(
β�ω
2

)

K0

(
β�ω
2

) − 1



 , (68)

where Ki(z) is the ith order of the modified Bessel func-
tion. The first order correction is therefore small, of the
order of (m/M)β�ω. However, since the dependence on P′
vanished in the first order, we calculate the second order
correction as well, and find

Γ (2)
m→n � Γ0

m

M
β�ω

×
[
K0

(
β�ω

2

)
+ 2

(
1

β�ω

)
K0

(
β�ω

2

)]
. (69)

We conclude that the contribution to the transition rate
of the motion of the center of mass, due to the interaction

with the electron reservoir, is dominantly of order m/M .
This factor, which is 1/

(
103A

)
for an atom with atomic

number A, is indeed very small. In a similar manner we
treat the dephasing rate, and reach the same conclusion.
We can therefore conclude that the corrections due to the
center of mass motion are negligible for all evolution rates.

4 Dephasing rate in a multi-level atom

In the previous sections, transition and dephasing rates
were calculated for the interaction of an atomic system
with an electron reservoir. So far we have concentrated
on the lasing pair of levels of the atomic system, and on
the adiabatic dephasing rate of their coherence. In this
section we will extend our investigation and consider how
the presence of other levels of the atomic system affects
the evolution rates of this lasing pair. Our definitions of
the different rates must be revised due to the presence of
other levels. Resorting to the nomenclature of laser the-
ory, we will focus on the two lasing levels, deriving their
dephasing rate, referred to as 1/T2, and the decay rate of
their population difference, referred to as 1/T1. The ra-
tio between these two rates is important in laser theory,
affecting the gain and the characteristics of the laser.

The dephasing rate between the two lasing levels is in-
creased due to the transitions to the non-lasing states, as
indicated by equation (4). This is important since in cer-
tain cases this effect can be of the same order of, or even
larger than, that of the adiabatic dephasing. A simple ex-
ample of this is the Ne-like capillary discharge X-ray laser.
This laser can be described as a three-level atom, the two
upper levels being the lasing levels. In this case the lower
lasing level is strongly coupled to the lowest level — the
ground state — through the radiation reservoir. Therefore,
the transitions from the lower lasing level to the ground
state, causing non-adiabatic dephasing, are significant for
the dephasing rate of the coherence of the laser. The latter
is then to be compared with the decay rate of the popula-
tion difference of the lasing levels. This decay rate, and not
the transition rate, comes into play in the semi-classical
model of the laser [11].

In dealing with many atomic levels interacting through
a reservoir, we assume that all transition rates are known,
since they can be calculated using the results of Section 2.
Notice that the non-adiabatic dephasing rate contribution
to 1/T2 is given directly by equation (4) in terms of the
transition rates. We are thus left with the problem of ob-
taining the rate 1/T1. Recall that the general rate equation
for the populations, Pn, of the nth state is expressed as

d

dt
Pn =

∑

m �=n

(PmΓm→n − PnΓn→m) , (70)

in terms of the transition rates. To describe the procedure
of identifying the decay rates we first demonstrate it for a
two-level atom, and then indicate how to extend it for a
three-level atom.

We begin with a two-level system, denoting the levels
as 1 and 2, and the transition rates between them as Γ1→2
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and Γ2→1, and writing equation (70) as

Ṗ1 = −Γ1→2P1 + Γ2→1P2

Ṗ2 = Γ1→2P1 − Γ2→1P2. (71)

The symmetry of the transition rates in equation (71)
results from the conservation of total population, i.e.,
P1 + P2 = 1. Defining the population difference by D =
P2 − P1, we get its evolution equation:

Ḋ = (Γ1→2 − Γ2→1) − (Γ1→2 + Γ2→1)D

≡ −Γ1

(
D − D0

)
, (72)

where the steady state population difference is

D0 ≡ Γ1→2 − Γ2→1

Γ1→2 + Γ2→1
, (73)

and its rate of change in time is

Γ1 ≡ (Γ1→2 + Γ2→1) . (74)

Thus the inverse life time of the population difference for
a two-level system is 1/T1 = Γ1. Recalling the expression
for the non-adiabatic dephasing rate, Γ2 = 1/T2, from
equation (4),

Γ2 =
1
2

(Γ1→2 + Γ2→1) , (75)

we find that
T2 = 2T1. (76)

We observe that for a two-level system, the non-adiabatic
dephasing rate is smaller than the decay rate of the pop-
ulation difference. In passing we wish to remark that for
a two level atom in a radiation reservoir, equation (76)
holds, since there is no dephasing by adiabatic pro-
cesses. Therefore, for a system of this kind, non-adiabatic
processes of dephasing make the dominant contribution
to 1/T2.

We turn on now to a three-level system, and write
equation (70) in matrix form. For n, m = 1, 2, 3, we ex-
press

d

dt
Pn =

∑

m

WnmPm,

where the transition matrix is

W =




−(Γ1→2+Γ1→3) Γ2→1 Γ3→1

Γ1→2 −(Γ2→1+Γ2→3) Γ3→2

Γ1→3 Γ2→3 −(Γ3→1+Γ3→2)



 .

(77)

The eigenvalues of W are the exponential decay rates of
the atomic populations. It is clear that one of these eigen-
values is zero, giving the steady-state solution, and the
slower of the other two rates is the decay rate of the pop-
ulation difference, Γ1. In general the expression for Γ1 is
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Fig. 2. Population difference and coherence vs. time in a three-
level atom. The figure depicts a case in which the coherence
decays quickly, while the population difference rises abruptly,
and then decays slowly. The rates chosen for this example were
Γ1→3 = Γ3→1 = 0, Γ1→2 = Γ2→1 = 100, Γ2→3 = Γ3→2 = 1.

quite complicated, and it depends on the various transi-
tion rates between the three levels. Therefore, the signif-
icance of the non-adiabatic dephasing rate compared to
the population difference decay rate varies according to
the relative magnitudes of these transition rates. An in-
teresting case is when Γ1→3, and Γ3→1, are completely
negligible, while Γ1→2, Γ2→1 
 Γ2→3, Γ3→2. Here we find
that Γ1/Γ2 ∝ Γ2→2/Γ1→2 � 1, i.e. non-adiabatic dephas-
ing is significant. This effect is presented in Figure 2.

The derivation given here consists of a simple, yet com-
prehensive method for calculating the rates 1/T1 and 1/T2,
which can be applied to similar systems. We emphasize
that, in the context of a complete description of dephas-
ing of an atomic system, the non-adiabatic dephasing rate
must be calculated, since for certain parameters of a phys-
ical problem, it can be significant.

5 Summary and conclusions

In this paper, we have developed a Hamiltonian-based
model for describing the evolution of a small atomic sys-
tem interacting with hot plasma. The motivation for our
work stems from X-ray laser research, in which the gain
medium of the laser is usually a small part of a hot, dense
plasma. Understanding the evolution of atomic states due
to such interactions is relevant to other physical problems
as well, such as emissions in stellar configurations.

We define our problem in terms of different interactions
between the atomic system and electron, ion and radiation
reservoirs, which model the plasma. Since treatment of a
radiation reservoir is given in the literature (e.g. [6]), and
since the effect of the ion reservoir is negligible, we focus
on interaction with the electron reservoir.

In our work we use the density matrix method to derive
the evolution rates, describing the reservoir states through
second quantization. These techniques enable us to derive
a general formulation, and verify it against results appear-
ing in literature. This formulation is extensible to different
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reservoirs, in similar physical setups. In contrast to pre-
vious work, this approach does not rely on the notions of
scattering theory, and is free of the limitations therein.
Therefore, our research provides added insight as to the
differences between reservoirs, and their associated inter-
actions.

Our description of the interaction with an electron
reservoir yields exact expressions for the transition rate
(Eq. (44)) and for the adiabatic dephasing rate (Eq. (55)).
We find that the adiabatic dephasing rate component does
not vanish (as in the case of a radiation reservoir), since
the interaction potential is composed of terms in every
order of the multipole expansion. We then derive approx-
imate expressions for the rates to the first contributing
term (Eqs. (46), (56)). Studying these simpler analytic
expressions, we learn that the adiabatic dephasing rate is
much larger than the transition rate, and therefore sig-
nificant for understanding the radiation emitted by the
atom.

We also check the effect of motion of the atomic center
of mass, which is responsible for the Doppler phenomenon,
on the rates calculated earlier. We show that the correc-
tion to the rates is negligible, following a derivation using
a power series expansion (Eqs. (68), (69)).

We then explore the effect of a multitude of energy lev-
els on the dephasing mechanisms. This more complicated
system requires that we compare the dephasing rate of two
levels with the decay rate of their population difference,
which is the relevant quantity (instead of the transition
rate). We derive the relationships for this effect for the case
of a two-level atom and for the case of a three-level atom,
and find that certain parameters of the system could en-
hance the relative significance of non-adiabatic dephasing.

In conclusion, this research has focused on deriving
generalized relationships for the evolution rates of an
atomic system interacting with plasma, which is modeled
using an electron reservoir. Employing the density matrix
formalism, we were able to derive the master equation
and all the relevant rates based on an integral Hamil-
tonian model. Our formulations for the transition rates
are validated by partial results found in the literature.
We also show that beyond familiar Doppler dephasing,
adiabatic dephasing caused by the electron reservoir, and
non-adiabatic dephasing in the case of a many-level atom,
could be significant.
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